Interactive Exploration
Learn how to use Ona Terminal effectively through hands-on interaction.
Using / Commands (Interactive Mode)
Master Ona Terminalβs interactive CLI with slash commands and examples.
Getting Started
Launch interactive mode:
ona-terminal
Youβll see the interactive prompt:
π€ |
Essential Commands
System Commands:
# Show all available commands
π€ | /help
# List all slash commands
π€ | /commands
# Check system status and model availability
π€ | /status
# Show available AI models
π€ | /models
# Exit the CLI
π€ | /exit
Code Generation:
# Generate code with natural language
π€ | generate a python function that reads CSV files
π€ | create a terraform module for AWS S3 bucket
π€ | write unit tests for my authentication function
# Generate with specific complexity
π€ | /generate --complexity high --language rust "HTTP client with retry logic"
Custom Model Commands:
# Use specific fine-tuned model
π€ | /model mistral-policy-analysis "analyze economic impact of solar policy"
# Use IaC specialized model
π€ | /model mistral-iac-generation "create terraform for multi-AZ deployment"
# Use Qwen Claude-MD model for complex reasoning
π€ | /model qwen-claude-md "complex architectural design with CLAUDE.md methodology"
Understanding Agents
Learn how agents work in Ona Terminal and how to create custom single-use agents.
What Are Agents?
Agents in Ona Terminal are specialized AI components that perform specific tasks. Each agent follows the single responsibility principle - doing one thing well.
Types of Agents
1. Built-in Agents:
# Code generation agent
π€ | /generate "python function to parse JSON"
# Documentation agent
π€ | /docs "explain AWS Lambda best practices"
# Analysis agent
π€ | /analyze "review this terraform module for security issues"
2. Model-Specific Agents:
# Use a specific model as an agent
π€ | /model claude-3-sonnet "complex reasoning task"
π€ | /model mistral-7b "generate infrastructure code"
3. Custom Single-Use Agents:
# Define your own agent for specific workflows
π€ | /agent create data-validator --task "validate CSV format"
π€ | /agent create cost-analyzer --task "analyze AWS spending"
Creating Custom Agents
Agent Definition:
# custom-agents.yaml
agents:
log-analyzer:
description: "Analyzes application logs for errors"
model: "claude-3-haiku"
system_prompt: "You are a log analysis expert..."
api-tester:
description: "Tests API endpoints and reports issues"
model: "mistral-7b"
system_prompt: "You test APIs systematically..."
Using Custom Agents:
# Invoke custom agent
π€ | /log-analyzer --file app.log --severity error
# Chain agents together
π€ | /api-tester --endpoint /users | /log-analyzer
Agent Orchestration
Agents can work together in workflows:
# Sequential execution
π€ | /analyze code.py > /generate tests > /validate
# Parallel execution
π€ | /parallel --agents "analyzer,linter,security-scan" --target src/
# Conditional execution
π€ | /if-error /analyze > /debug > /fix
Loading Bedrock & Custom Models
Configure AWS Bedrock and deploy custom fine-tuned models.
AWS Bedrock Configuration
Recommended Models:
- Amazon Nova Pro - Primary model for best availability
- Amazon Nova Lite - Fast fallback option
Setup Process: Configure AWS credentials and region for Bedrock access. Ona Terminal will automatically detect available models in your region.
Custom Fine-Tuned Models
Available Models (from deployments):
π― Mistral Policy Analysis (7B):
# Deploy model
π€ | /deploy-model --name mistral-policy-analysis --instance g5.2xlarge
# Use for analysis
π€ | /model mistral-policy-analysis "economic impact analysis of renewable energy policy"
ποΈ Mistral Infrastructure-as-Code (7B):
# Deploy model
π€ | /deploy-model --name mistral-iac-generation --instance g5.2xlarge
# Generate infrastructure
π€ | /model mistral-iac-generation "terraform module for secure multi-region deployment"
π§ Qwen Claude-MD (14B):
# Deploy larger model
π€ | /deploy-model --name qwen-claude-md --instance g5.4xlarge
# Complex reasoning tasks
π€ | /model qwen-claude-md "architectural design following CLAUDE.md explore-plan-code-commit methodology"
Model Deployment Commands
Check Model Availability:
# List deployed models
π€ | /models --deployed
# Check model health
π€ | /model-health --all
# Show deployment status
π€ | /deployment-status
Deploy Custom Models:
# Deploy single model
π€ | /deploy --model mistral-policy-analysis --instance g5.2xlarge
# Deploy unified Mistral (60% cost savings)
π€ | /deploy --unified mistral-dual --instance g5.2xlarge
# Scale model deployment
π€ | /scale --model qwen-claude-md --instances 2
Cost Optimization Strategies
Unified Deployment (60% savings):
# Deploy both Mistral models on single instance
π€ | /deploy --unified mistral-dual
# Result: IaC + Policy models sharing base Mistral-7B
Instance Sizing:
# Cost-effective for Mistral models
π€ | /deploy --model mistral-iac-generation --instance g4dn.xlarge
# Performance-optimized for Qwen
π€ | /deploy --model qwen-claude-md --instance g5.4xlarge
Whatβs Next?
- See Real-World Implementation - Complete O&M business case
- Technical Setup - 5-minute developer setup
- Business Value - Understanding ROI and benefits
Get Help & Stay Updated
Contact Support
For technical assistance, feature requests, or any other questions, please reach out to our dedicated support team.
Email Support Join Our Discord